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Introduction

How can we characterize, model, and reason about the
structure of social networks?

Triadic closure and “the strength of weak ties”

Power-laws and scale-free networks, “rich-get-richer”
phenomena

Small-world phenomena
Hubs & Authorities; PageRank
Models of network structure



So far we’ve seen (a little about) how networks can be
characterized by their connectivity patterns

What more can we learn by looking at higher-order

oroperties, such as relationships between triplets of
nodes?



Q: Last time you found a job, was it through:
A complete stranger?
A close friend?
An acquaintance?

A. Surprisingly, people often find jobs through
acquaintances rather than through close friends
(Granovetter, 1973)



Motivation

Your friends (hopefully) would seem to have the greatest

motivation to help you.

But! Your closest friends have limited information that you
don’t already know about.

Alternately, acquaintances act as a “bridge” to a different
poart of the social network, and expose you to new
information.

This phenomenon is known as the



Motivation

To make this concrete, we'd like to come up with some
notion of “tie strength” in networks
To do this, we need to go beyond just looking at edges in

isolation, and looking at how an edge connects one part of
a network to another



Triadic Closure

Q: Which edge is most likely to form next in this (social)
network?

A. (b), because it creates a triad in the network



Triangles

“If two people in a social network have a friend in common, then there is
an increased likelihood that they will become friends themselves at some
point in the future” (Ropoport, 1953)

Three reasons (see Easley & Kleinberg):
Every mutual friend a between bob and chris gives them an opportunity to meet

If bob is friends with ashton, then knowing that chris is friends with ashton gives bob a
reason to trust chris

If chris and bob don’t become friends, this causes stress for ashton (having two
friends who don’t like each other), so there is an incentive for them to connect
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Clustering Coefficient

Clustering coefficient:

What portion of i’s neighbors are connected?
Node i with degree k;

('_ & [0 1] This ranges between 0 (none of my friends are friends with each other) and 1 (all of my
1 ’ friends are friends with each other)

2e,
, == " where ¢; is the number of edges
I
k!. (/C!. —1) between the neighbors of node i

C;=1 Ci=1/2 ;=0

: .. 1 &
Average clustering coefficient: C = FZQ



Clustering Coefficient

Alternately it can be defined as the fraction of connected triplets in the
graph that are closed (these do not evaluate to the same thing)):

O — # of closed triplets # <I
e

of connected triplets " q_l_ /I



Clustering Coefficient

Clustering coefficient:

What portion of i’s neighbors are connected?

Node i with degree k;
2e,

l

where e, is the number of edges
between the neighbors of node i

C, =
k,(k, —1)

szz, E:‘BZJ, CB:2/2 — ]
kp=4, ep=2, Cp=4/12 = 1/3
Avg. clustering: C=0.33




Clustering Coefficient

Clustering coefficient of a graph G:

CC(G) = average of c(u) over all vertices u in G
what Do We Mean By “High” CC?

CC(G) measures how likely vertices with a common neighbor are to be
neighbors themselves

Should be compared to how likely random pairs of vertices are to be
neighbors

Let p be the edge density of network/graph G: p=E/NWN -1)/2)
Here E = total number of edgesin G

If we picked a pair of vertices at random in G, probability they are connected is
exactly p

So, we will say clustering is high it CC(G) >>p



12 x 1/2) = 1

2/(3 x 2/2) = 2/3 3/(4 x3/2) =1/2

2/(3 x 2/2) = 2/3 1/(2x1/2) =1

CC.=(1+2+1+2/3+2/3)/6=0.7666...
p=7/(5x4/2) =0.7
Not highly clustered



Network: simple cycle + edges to vertices 2 hops away

on cycle

By symmetry, all vertices have the same clustering coefficient
Clustering coefficient of a vertex v:

Degree of v is 4, so the number of possible edges between pairs of neighbors of v is 4 x
3/2=6

How many pairs of v's neighbors actually are connected? 3 --- the two clockwise
neighbors, the two counterclockwise, and the immediate cycle neighbors

Sothec.c.ofvis 3/6 =%

Compare to overall edge density:

Total number of edges = 2N

Edge density p = 2N/(N(N-1)/2) ~ 4/N

As N becomes large, 2 >> 4/N

So this cyclical network is highly clustered



Divide N vertices into sgrt(N) groups of size sqrt(N)
(here N = 25)
Add all connections within each group (cliques),

connect “leaders” in a cycle

N - sgrt(N) non-leaders
CC of network as N becomes large?
Edge Density?

Add all connections within each group (cliques), connect “leaders” in a cycle
N — sqrt(N) non-leaders have C.C. = 1, so network C.C. 2 1 as N becomes large

Edge density is p ~ 1/sqrt(N)
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Research Study

Higher-order structures such as larger cliques are crucial to the structure and function of

complex networks Higher-order clustering in networks

Hao Yin*
Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, 94305, USA

Austin R. Benson'
Department of Computer Science, Cornell University, Ithaca, NY, 14850, USA

Jure Leskovect
Computer Science Department, Stanford University, Stanford, CA, 94305, USA
(Dated: April 30, 2018)

A fundamental property of complex networks is the tendency for edges to cluster. The extent
of the clustering is typically quantified by the clustering coefficient, which is the probability that
a length-2 path is closed, i.e., induces a triangle in the network. However, higher-order cliques
beyond triangles are crucial to understanding complex networks, and the clustering behavior with
respect to such higher-order network structures is not well understood. Here we introduce higher-
order clustering coefficients that measure the closure probability of higher-order network cliques
and provide a more comprehensive view of how the edges of complex networks cluster. Our higher-
order clustering coefficients are a natural generalization of the traditional clustering coefficient. We
derive several properties about higher-order clustering coefficients and analyze them under common
random graph models. Finally, we use higher-order clustering coefficients to gain new insights into
the structure of real-world networks from several domains.

http://snap.stanford.edu/hocc/
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Bridge Edge

An edge (b,c) is a bridge edge if removing it would
leave no path between b and ¢ in the resulting network




Local Bridge Edge

An edge (b,c) is a local bridge if removing it would leave no
edge between b’s friends and c¢’s friends (though there could
be more distant connections)
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Strong Triadic Closure Property

If (a,b) and (b,c) are connected by strong ties, there
must be at least a weak tie between a and c.

Note: (a,c) can be weak or strong!




Granovetter's Theorem

If the strong triadic closure property is satisfied for o
node, and that node is involved in two strong ties, then
any incident local bridge must be a weak tie.

Proof?

local bridge

Proof (by contradiction): (1) b has two strong ties (to a and e); (2) suppose it has a strong tie to ¢
via a local bridge; (3) but now a tie must exist between c and a (or c and e) due to strong triadic
closure; (4) so b = ¢ cannot be a bridge



Granovetter's Theorem

So, if we're receiving information from distant parts of the
network (i.e., via “local bridges”) then we must be receiving it
via weak ties.

Q: How to test this theorem empirically on real data?
A: Onnela et al. 2007 studied networks of mobile phone calls.



Study Example #1

Defn. 1: Define the “overlap”

between two nodes to be )
the Jaccard similarity Vi WY

between their connections \.. “local bridges”

OorG) 0i=2/3 Oi=1 have overlap 0
o 1Nl
Oii = Tmor() }v %

neighbours of i :
(picture from Onnela et al., 2007)

Secondly, define the “strength” of a tie in terms of the number of phone calls between i and j



Study Example #1

finding: the “stronger”
our tie, the more likely
there are to be
additional ties between
our mutual friends

0.2} ‘ observed data

| randomized strengths

0 02 04 06 08 1
cumulative tie strength

(picture from Onnela et al., 2007)



Study Example #2

Suppose a user receives four e-mail invites to join facebook from users
who are already on facebook. Under what conditions are we most likely
to accept the invite (and join facebook)?

If those four invites are from four close friends?
If our invites are from four acquiantances?

If the invites are from a combination of friends, acquaintances, work colleagues, and
family members?

hypothesis: the invitations are most likely to be adopted if they come from distinct
groups of people in the network



Study Example #2

Let’s consider the connectivity patterns amongst the people who
tried to recruit us

2.5—
o
T2.0— ¢ ,
<  Case 1: two users attempted to recruit
21.5— - y-axis: relative to recruitment by a single user
g .  finding: recruitments are more likely to succeed if they

1.0— .
§ come from friends who are not connected to each other
0.5
)
o

o—
||
Contact
neighborhood: [E

(picture from Ugander et al., 2012)



Study Example #2

Let's consider the connectivity patterns amongst the people who
tried to recruit us
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error bars are high since this
structure Is very very rare (picture from Ugander et al,, 2012)



Conclusion

Important aspects of network structure can be explained by
the way an edge connects two parts of the network to each

other:
Edges tend to close open triads (clustering coefficient etc.)
It can be argued that edges that bridge different parts of the network somehow
correspond to “weak” connections (Granovetter; Onnela et al)
Disconnected parts of the networks (or parts connected by local bridges) expose us
to distinct sources of information (Granovettor; Ugander et al.)



Structural Balance

Some of the assumptions that we’ve seen today may
not hold if edges have signs associated with them

balanced: the edge imbalanced: the edge
a—>c is likely to form a—>c is unlikely to form



Degree



Is degree everything?

= Nodes with the same degree might have different
properties
= In what ways does degree fail to capture centrality in

the following graphs?
= ability to broker between groups
= |ikelihood that information originating anywhere in the network

reaches you...
@ ©

® ® e 6 o OJOJO
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Degdree and Degree Distribution

Degree k; of node i is a measure of its centrality

Nodes with high degrees are called hubs

Maximum degree k.4, = max(k;) is also an important measure
l

The variance of node-degrees can be an indicator of network
heterogeneity, i.e. the more the variance the more the heterogeneituy.
Degree distribution

frequency

degree



Degdree Distribution

However:

Illustration:

G2

G, and G, are of the same size (i.e.|G,|=|G,| -- they have the same
number of nodes and edges) and they have same degree distribution,
but G, and G, have very different topologies (i.e., graph structure).



Degdree Distribution

(((((((((

A
P (k)

degree k

(log-log plot)

Here P(k) ~ k¥, where often 2 <y < 3. This is a power-/law, heavy-tailed
distribution.

Networks with power-law degree distributions are called scale-free
networks. In them, most of the nodes are of low degree, but there is a
small number of highly-linked nodes (nodes of high degree) called “hubs.”



Powe Laws

Social and information networks often follow

In-degree (total, remote-onlyl distr.
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Degdree Distribution

Here P(k) is a Poisson distribution.

P(k)

. K

average degree is meaningful



Degdree-Degree correlation

It is important to know if the nodes with degree k are connected to nodes
with degree k’. How?

1) Method proposed by Pastor Satoras et al. and plot the mean degree of the
neighbors as a function of the degree

3
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Fi1G. 3.13. Correlations of the degrees of nearest-neighbour vertices (au-
tonomous systems) in the Internet at the interdomain level (after Pas-
tor-Satorras, Vazquez, and Vespignani 2001). The empirical dependence of
the average degree of the nearest neighbours of a vertex on the degree of this
vertex is shown in a log-log scale. This empirical dependence was fitted by a
power law with exponent approximately 0.5.



Degdree-Degree correlation

It is important to know if the nodes with degree k are connected to nodes
with degree k’. How?
2) method proposed by Newman and compute the correlation coefficient

E is the total number of edges
a; is the entry (i,j) of the adjacency matrix
k. is the degree of node |



Degdree-Degree correlation

r > 0: the network is called assortative

Node with large degree intent to connect to those with large degrees
and nodes with low degrees intend to connect to those with low
degrees (rich with rich and poor with poor)

r < 0: the network is called disassortative

Node with large degree intent to connect to those with low degrees and
nodes with low degrees intend to connect to those with high degrees
(rich with poor)

r = 0: no correlations
There is no specific intention in the connection between the nodes in the
sense of their degrees



Any Question?
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